目录
  • 1 Series
    • 1.1创造一个serise数据
    • 1.2 指定index
    • 1.3 用dictionary构造一个series
    • 1.4 用numpy ndarray构造一个Series
    • 1.5 选择数据
    • 1.6 操作数据
    • 1.7 查找
    • 1.8 Series赋值
    • 1.9 满足条件的统一赋值

1 Series

线性的数据结构, series是一个一维数组

Pandas 会默然用0到n-1来作为series的index, 但也可以自己指定index( 可以把index理解为dict里面的key )

1.1创造一个serise数据

 import pandas as pd import numpy as np ​s = pd.Series([9, 'zheng', 'beijing', 128]) ​print(s)

打印

0 9
1 zheng
2 beijing
3 128
dtype: object

访问其中某个数据

 print(s[1:2]) ​ # 打印 1 zheng dtype: object

Series类型的基本操作:

 In [14]: a = pd.Series({'a':1,'b':5}) In [15]: a.index Out[15]: Index(['a', 'b'], dtype='object') In [16]: a.values #返回一个多维数组numpy对象 Out[16]: array([1, 5], dtype=int64) 

 #自动索引和自定义索引并存,但不能混用 In [17]: a[0] #自动索引 Out[17]: 1 #自定义索引 In [18]: a['a'] Out[18]: 1 #不能混用 In [20]: a[['a',1]] Out[20]: a 1.0 1 NaN dtype: float64 

 #通过自定义索引访问 #对索引保留字in操作,值不可以 In [21]: 'a' in a Out[21]: True In [22]: 1 in a Out[22]: False 

Series类型在运算中会自动对齐不同索引的数据

 In [29]: a = pd.Series([1,3,5],index = ['a','b','c']) In [30]: b = pd.Series([2,4,5,6],index = ['c,','d','e','b']) In [31]: a+b Out[31]: a NaN b 9.0 c NaN c, NaN d NaN e NaN dtype: float64 

Series对象可以随时修改并即刻生效

 In [32]: a.index = ['c','d','e'] In [33]: a Out[33]: c 1 d 3 e 5 dtype: int64 In [34]: a+b Out[34]: b NaN c NaN c, NaN d 7.0 e 10.0 dtype: float64 

1.2 指定index

 import pandas as pd import numpy as np ​s = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index=[1,2,3,'e','f','g'])​ print(s)

打印

1 9
2 zheng
3 beijing
e 128
f usa
g 990
dtype: object

根据索引找出值

 print(s['f']) # usa

1.3 用dictionary构造一个series

 import pandas as pd import numpy as np s = {"ton": 20, "mary": 18, "jack": 19, "car": None} sa = pd.Series(s, name="age")​ print(sa)

打印

car NaN
jack 19.0
mary 18.0
ton 20.0
Name: age, dtype: float64

检测类型

 print(type(sa)) # <class 'pandas.core.series.Series'>

1.4 用numpy ndarray构造一个Series

生成一个随机数

 import pandas as pd import numpy as np ​ num_abc = pd.Series(np.random.randn(5), index=list('abcde')) num = pd.Series(np.random.randn(5)) ​ print(num) print(num_abc) ​ # 打印 0 -0. 1 -1. 2 1. 3 -0. 4 1. dtype: float64 a -0. b 1. c 0. d 0. e -1. dtype: float64

1.5 选择数据

 import pandas as pd import numpy as np ​ s = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index=[1,2,3,'e','f','g']) ​ print(s[1:3]) # 选择第1到3个, 包左不包右 zheng beijing print(s[[1,3]]) # 选择第1个和第3个, zheng 128 print(s[:-1]) # 选择第1个到倒数第1个, 9 zheng beijing 128 usa

1.6 操作数据

 import pandas as pd import numpy as np​ s = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index=[1,2,3,'e','f','g']) sum = s[1:3] + s[1:3] sum1 = s[1:4] + s[1:4] sum2 = s[1:3] + s[1:4] sum3 = s[:3] + s[1:]​ print(sum) print(sum1) print(sum2) print(sum3)

打印

2 zhengzheng
3 beijingbeijing
dtype: object
2 zhengzheng
3 beijingbeijing
e 256
dtype: object
2 zhengzheng
3 beijingbeijing
e NaN
dtype: object
1 NaN
2 zhengzheng
3 beijingbeijing
e NaN
f NaN
g NaN
dtype: object

1.7 查找

是否存在

 USA in s # true

范围查找

 import pandas as pd import numpy as np s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None} sa = pd.Series(s, name="age") print(sa[sa>19])


中位数

 import pandas as pd import numpy as np s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None} sa = pd.Series(s, name="age") print(sa.median()) # 20

判断是否大于中位数

 import pandas as pd import numpy as np s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None} sa = pd.Series(s, name="age") print(sa>sa.median()) 


找出大于中位数的数

 import pandas as pd import numpy as np s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None} sa = pd.Series(s, name="age") print(sa[sa > sa.median()])


中位数

 import pandas as pd import numpy as np s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None} sa = pd.Series(s, name="age") more_than_midian = sa>sa.median() print(more_than_midian) print('---------------------') print(sa[more_than_midian])


1.8 Series赋值

 import pandas as pd import numpy as np s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None} sa = pd.Series(s, name="age") print(s) print('----------------') sa['ton'] = 99 print(sa)


1.9 满足条件的统一赋值

 import pandas as pd import numpy as np s = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None} sa = pd.Series(s, name="age") print(s) # 打印原字典 print('---------------------') # 分割线 sa[sa>19] = 88 # 将所有大于19的同一改为88 print(sa) # 打印更改之后的数据 print('---------------------') # 分割线 print(sa / 2) # 将所有数据除以2

到此这篇关于pandas的Series类型与基本操作详解的文章就介绍到这了,更多相关pandas Series基本操作内容请搜索本网站以前的文章或继续浏览下面的相关文章希望大家以后多多支持本网站!

您可能感兴趣的文章:

  • Python数据分析 Pandas Series对象操作
  • 使用python计算方差方式——pandas.series.std()
  • Pandas数据结构详细说明及如何创建Series,DataFrame对象方法
  • 教你漂亮打印Pandas DataFrames和Series
  • Pandas把dataframe或series转换成list的方法
  • pandas中的series数据类型详解
  • 浅谈Pandas Series 和 Numpy array中的相同点
  • Pandas中Series的属性,方法,常用操作使用案例