这个函数的功能是返回给定axis上的累计和函数的原型如下:详见 doc
官方的文档是没有详细解释,本人做了测试自己把理解的写下。
1.对于一维输入a(可以是list,可以是array,假设a=[1, 2, 3, 4, 5, 6, 7] ,就是当前列之前的和加到当前列上,如下:
>>>import numpy as np >>> a=[1,2,3,4,5,6,7] >>> np.cumsum(a) array([ 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 75, 105])
2.对于二维输入a,axis=0(第1行不动,将第1行累加到其他行);axis=1(进入最内层,转化成列处理。第1列不动,将第1列累加到其他列),如下:
>>>import numpy as np >>> c=[[1,2,3],[4,5,6],[7,8,9]] >>> np.cumsum(c,axis=0) array([[ 1, 2, 3], [ 5, 7, 9], [12, 15, 18]]) >>> np.cumsum(c,axis=1) array([[ 1, 3, 6], [ 4, 9, 15], [ 7, 15, 24]])
3.对于三维输入a, axis=0 (第1行不动,将第1行累加到其他行); axis=1(进入第2层,每个第二层第1行不动,累加到其他行); axis=2(进入最内层,转化成列处理。第1列不动,将其累加到其他列),注意维数从外到内是0-2编号,如下:
>>>import numpy as np >>> a [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 20, 30]]] >>> np.cumsum(a,axis=0) array([[[ 1, 2, 3], [ 4, 5, 6]], [[ 8, 10, 12], [14, 25, 36]]]) >>> np.cumsum(a,axis=1) array([[[ 1, 2, 3], [ 5, 7, 9]], [[ 7, 8, 9], [17, 28, 39]]]) >>> np.cumsum(a,axis=2) array([[[ 1, 3, 6], [ 4, 9, 15]], [[ 7, 15, 24], [10, 30, 60]]])
[ //axis=0 [//axis=1。同时是axis=0所对应的第 1 行,注意是此中括号包含的整个内容 [1, 2, 3], //axis=2。同时是 axis=1所对的第1行 [4, 5, 6] //axis=2 ], [//axis=1。同时是axis=0所对应的第 2行 [7, 8, 9], //axis=2。同时是 axis=1所对的第1行 [10, 20, 30] //axis=2 ], ]
axis=0说明,第1维度,包含2行,绿色中括号的list,第1行(也就是由1,2,3,4,5,6组成的list)不动,累加到第二行,注意是累加
axis=1说明,第2维度, 每个绿色中括号里第1行不变,也就是 [1,2,3]和[7,8,9]不动,累加到同兄弟行(同属一个中括号的行)
axis=2说明,第3维度,也是最内层,转化成列处理,紫色数字所在列不动,累加到其他列上
对于更高维度,可以参考3维来从外向内剥离的方式理解
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持本网站。
您可能感兴趣的文章:
- python画图的函数用法以及技巧
- 利用python求积分的实例
- python实现在函数图像上添加文字和标注的方法
- python函数与方法的区别总结
- 使用python绘制二元函数图像的实例
- Python 函数绘图及函数图像微分与积分