智能驾驶 车牌检测和识别(五)《C++实现车牌检测和识别(可实时车牌识别)》
智能驾驶 车牌检测和识别(五)《C++实现车牌检测和识别(可实时车牌识别)》
1. 前言
这是项目《智能驾驶 车牌检测和识别》系列之《C++实现车牌检测和识别(可实时车牌识别)》;本项目将开发一个C/C++版本的车牌检测和识别,其中车牌检测算法采用YOLOv5模型,车牌识别算法采用PlateNet模型;车牌检测和识别Demo在OpenCL加速下,可以达到实时的检测和识别效果,基本满足业务的性能需求。
车牌识别Demo效果展示:
【 整套项目下载地址】:智能驾驶 车牌检测和识别(五)《C++实现车牌检测和识别(可实时车牌识别)》
【Android Demo体验】Android实现车牌检测和识别-Android文档类资源-CSDN下载
【尊重原创,转载请注明出处】 智能驾驶 车牌检测和识别(五)《C++实现车牌检测和识别(可实时车牌识别)》:https://blog.csdn.net/guyuealian/article/details/128704276
更多项目《智能驾驶 车牌检测和识别》系列文章请参考:智能驾驶 车牌检测和识别(一)《CCPD车牌数据集》:https://blog.csdn.net/guyuealian/article/details/128704181智能驾驶 车牌检测和识别(二)《YOLOv5实现车牌检测(含车牌检测数据集和训练代码)》:https://blog.csdn.net/guyuealian/article/details/128704068智能驾驶 车牌检测和识别(三)《CRNN和LPRNet实现车牌识别(含车牌识别数据集和训练代码)》:https://blog.csdn.net/guyuealian/article/details/128704209智能驾驶 车牌检测和识别(四)《Android实现车牌检测和识别(可实时车牌识别)》:https://blog.csdn.net/guyuealian/article/details/128704242智能驾驶 车牌检测和识别(五)《C++实现车牌检测和识别(可实时车牌识别)》:https://blog.csdn.net/guyuealian/article/details/128704276智能驾驶 红绿灯检测(一)《红绿灯(交通信号灯)数据集》:https://blog.csdn.net/guyuealian/article/details/128222850智能驾驶 红绿灯检测(二)《YOLOv5实现红绿灯检测(含红绿灯数据集+训练代码)》:https://blog.csdn.net/guyuealian/article/details/128240198智能驾驶 红绿灯检测(三)《Android实现红绿灯检测(含Android源码 可实时运行)》:https://blog.csdn.net/guyuealian/article/details/128240334 智能驾驶 车辆检测(一)《UA-DETRAC BITVehicle车辆检测数据集》:https://blog.csdn.net/guyuealian/article/details/127907325 智能驾驶 车辆检测(二)《YOLOv5实现车辆检测(含车辆检测数据集+训练代码)》:https://blog.csdn.net/guyuealian/article/details/128099672 智能驾驶 车辆检测(三)《Android实现车辆检测(含Android源码 可实时运行)》:https://blog.csdn.net/guyuealian/article/details/128190532
2. 车牌检测模型(YOLOv5)
车牌检测模型训练过程,请参考:智能驾驶 车牌检测和识别(二)《YOLOv5实现车牌检测(含车牌检测数据集和训练代码)》:https://blog.csdn.net/guyuealian/article/details/128704068
为了能部署在开发板或者手机平台上,本人对YOLOv5s进行了简单的模型轻量化,并开发了一个轻量级的版本yolov5s05_416和yolov5s05_320模型;轻量化模型在普通Android手机上可以达到实时的检测效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。下表格给出轻量化模型的计算量和参数量以及其检测精度模型input-sizeparams(M)GFLOPsmAP_0.5:0.95yolov5s640×6407.216.50.75261yolov5s05416×4161.71.80.74593yolov5s05320×3201.71.10.74341
车牌检测效果:
YOLOv5车牌检测模型在C++端上部署过程,请参考如下
(1) 将Pytorch模型转换ONNX模型
训练好yolov5s05或者yolov5s模型后,你需要将模型转换为ONNX模型,并使用onnx-simplifier简化网络结构
GitHub: https://github.com/daquexian/onnx-simplifierInstall: pip3 install onnx-simplifier
(2) 将ONNX模型转换为TNN模型
目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行Android端上部署:
TNN转换工具:(1)将ONNX模型转换为TNN模型,请参考TNN官方说明:TNN/onnx2tnn.md at master · Tencent/TNN · GitHub(2)一键转换,懒人必备:一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine (可能存在版本问题,这个工具转换的TNN模型可能不兼容,建议还是自己build源码进行转换,2022年9约25日测试可用)
3. 车牌识别模型(PlateNet)
车牌识别模型训练过程,请参考 智能驾驶 车牌检测和识别(三)《CRNN和LPRNet实现车牌识别(含车牌识别数据集和训练代码)》:https://blog.csdn.net/guyuealian/article/details/128704209
项目基于CRNN或LPRNet模型构建车牌识别算法,支持绿牌和蓝牌识别;为方便后续工程化,项目对CRNN模型进行魔改,提出一个PlateNet模型,用于支持部署到Android平台或者开发板上
整套智能车牌检测和识别系统,在OpenCL加速下,可以达到实时的检测效果,基本满足业务的性能需求。下表格给出CRNN,LPRNet和PlateNet模型的计算量和参数量以及其车牌识别的准确率:模型input-sizeparams(M)GFLOPsAccuracyLPRNet94×240.48M0.147GFlops0.9393CRNN160×328.35M1.06GFlops0.9343PlateNet168×481.92M1.25GFlops0.9583
车牌识别Demo效果展示:
PlateNet车牌识别模型在C++端上部署过程,请参考如下
(1) 将Pytorch模型转换ONNX模型
车牌识别项目源码demo.py文件中参数--export设置为True,可将Pytorch的模型转换为ONNX模型文件,且ONNX文件会默认保存在Pytorch的模型文件同一目录下。
(2) 将ONNX模型转换为TNN模型
TNN转换工具,请参考:(1)将ONNX模型转换为TNN模型,请参考TNN官方说明:TNN/onnx2tnn.md at master · Tencent/TNN · GitHub(2)一键转换,懒人必备:一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine (可能存在版本问题,这个工具转换的TNN模型可能不兼容,建议还是自己build源码进行转换,2022年9约25日测试可用)
4. 车牌检测和识别C++端上部署
(1) 项目结构
(2) 配置开发环境(OpenCV+OpenCL+base-utils+TNN)
项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置和编译安装OpenCV:图像处理
图像处理(如读取图片,图像裁剪等)都需要使用OpenCV库进行处理
安装教程:Ubuntu18.04安装opencv和opencv_contrib_AI吃大瓜的博客-CSDN博客_opencv opencv_contrib ubuntu OpenCV库使用opencv-4.3.0版本,opencv_contrib库暂时未使用,可不安装 安装OpenCL:模型加速
安装教程:Ubuntu16.04 安装OpenCV&OpenCL_xiaozl_284的博客-CSDN博客_clinfo源码下载 OpenCL用于模型GPU加速,若不使用OpenCL进行模型推理加速,纯C++推理模型,速度会特别特别慢 base-utils:C++库
GitHub:https://github.com/PanJinquan/base-utils (无需安装,项目已经配置了) base_utils是个人开发常用的C++库,集成了C/C++ OpenCV等常用的算法 TNN:模型推理
GitHub:https://github.com/Tencent/TNN (无需安装,项目已经配置了) 由腾讯优图实验室开源的高性能、轻量级神经网络推理框架,同时拥有跨平台、高性能、模型压缩、代码裁剪等众多突出优势。TNN框架在原有Rapidnet、ncnn框架的基础上进一步加强了移动端设备的支持以及性能优化,同时借鉴了业界主流开源框架高性能和良好拓展性的特性,拓展了对于后台X86, NV GPU的支持。手机端 TNN已经在手机QQ、微视、P图等众多应用中落地,服务端TNN作为腾讯云AI基础加速框架已为众多业务落地提供加速支持。
(3) 部署TNN模型
项目实现了C/C++版本的车牌检测和车牌识别,车牌检测模型YOLOv5和车牌识别模型PlateNet,模型推理采用TNN部署框架(支持多线程CPU和GPU加速推理);图像处理采用OpenCV库,模型加速采用OpenCL,在普通设备即可达到实时处理。 如果你想在这个 Demo部署你自己训练的车牌检测模型YOLOv5和车牌识别模型PlateNet,你可将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把原始的模型替换成你自己的TNN模型即可。
(4)CMake配置
这是CMakeLists.txt,其中主要配置OpenCV+OpenCL+base-utils+TNN这四个库,Windows系统下请自行配置和编译
(5)main源码
主程序中函数main_for_detect_plate()实现车牌检测+车牌识别的过程,函数main_for_plate()仅仅包含车牌识别,没有车牌检测
(6)源码编译和运行
编译脚本,或者直接:bash build.sh
如果你要测试CPU运行的性能,请修改src/main_for_crnn.cpp DeviceType device = CPU; 如果你要测试GPU运行的性能,请修改src/main_for_crnn.cpp (需配置好OpenCL) DeviceType device = GPU;
下面截图给出开启OpenCL加速的性能对比截图,纯C++推理模式需要耗时几秒的时间,而开启OpenCL加速后,GPU模式耗时仅需十几毫秒,性能极大的提高。
CPU:
GPU:
5. 车牌检测和识别效果
C++版本的opencv不支持中文显示,暂时未解决这个BUG,不过LOG会打印车牌的信息,凑合的用吧
下图GIF这是Python版本的车牌检测和识别效果,C++版本与Python版本的结果几乎是一致
6. 项目源码下载
【车牌检测和识别C/C++源码下载】智能驾驶 车牌检测和识别(五)《C++实现车牌检测和识别(可实时车牌识别)》
整套项目源码内容包含:提供YOLOv5车牌检测模型:包含快速版yolov5s05车牌检测模型,在普通手机可实时检测识别,CPU(4线程)约30ms左右,GPU约25ms左右;包含高精度版本yolov5s车牌检测模型,CPU(4线程)约250ms左右,GPU约100ms左右提供PlateNet车牌识别模型:支持蓝牌和绿牌车牌识别C++源码支持CPU和GPU,GPU模型加速需要配置好OpenCL,否则速度很慢
如果你想体验一下车牌检测和识别效果,可下载Android版本进行测试,Android和C++版本的车牌检测和识别核心算法是一样的【Android APP Demo体验】Android实现车牌检测和识别-Android文档类资源-CSDN下载
更多项目《智能驾驶 车牌检测和识别》系列文章请参考: 智能驾驶 车牌检测和识别(一)《CCPD车牌数据集》:https://blog.csdn.net/guyuealian/article/details/128704181智能驾驶 车牌检测和识别(二)《YOLOv5实现车牌检测(含车牌检测数据集和训练代码)》:https://blog.csdn.net/guyuealian/article/details/128704068智能驾驶 车牌检测和识别(三)《CRNN和LPRNet实现车牌识别(含车牌识别数据集和训练代码)》:https://blog.csdn.net/guyuealian/article/details/128704209智能驾驶 车牌检测和识别(四)《Android实现车牌检测和识别(可实时车牌识别)》:https://blog.csdn.net/guyuealian/article/details/128704242智能驾驶 车牌检测和识别(五)《C++实现车牌检测和识别(可实时车牌识别)》:https://blog.csdn.net/guyuealian/article/details/128704276